
CONCEPTS FOR MODEL–BASED REQUIREMENTS TESTING OF SERVICE
ORIENTED SYSTEMS

Michael Felderer and Ruth Breu
and Joanna Chimiak–Opoka

Institute of Computer Science
University of Innsbruck

Innsbruck, Austria
michael.felderer@uibk.ac.at

Michael Breu
arctis software technology GmbH

Inzing, Austria
michael.breu@arctis.at

Felix Schupp
softmethod GmbH
Munich, Germany

felix.schupp@softmethod.de

ABSTRACT
In this paper we present the core concepts of Telling Test-
Stories, a model–driven framework for test–driven require-
ments testing of service oriented systems. Telling TestSto-
ries provides a new way of eliciting and validating require-
ments through intertwined specification of requirements
and executable test stories. We define a Domain Specific
Language (DSL) to formalize the system requirements and
the test model. The DSL allows test cases to be specified
based on the concepts of the requirements specification (ac-
tors, objects, services) and test cases to be separated from
test data. To ensure the quality of the designed artifacts
we introduce consistency and coverage checks expressed in
OCL. We provide a prototypic implementation of the con-
cepts and started an industrial validation of its usability.

KEY WORDS
Model–Based Testing, Quality Assurance, Domain Spe-
cific Languages, Service Oriented Systems, Requirements
Engineering.

1 Introduction

In the recent years there has been an important shift of
paradigm from client–server based applications to ser-
vice oriented systems.Service oriented systems(SOS)
are networks of peers offering executable services to each
other, i.e. following the architectural style of Service Ori-
ented Architectures (SOA). SOS are an attempt to better
link business with technology and are applied in intra–
organizational applications to leverage flexible IT land-
scapes and in inter–organizational scenarios in which peers
conduct workflows across different domains and platforms.

1.1 Challenges

With the increasing number of service–oriented system im-
plementations, new challenges concerning the testing of
SOS are emerging [1] on all levels: on the unit level, testers
only have access to interfaces but lack access to code of ser-
vices, on the integration level, distributed services based on
different technologies and platforms have to be integrated

at runtime, and on system level the complete business pro-
cess has to be considered in a complex environment, the
traceability of executable services and business servicesof
the requirements specification has to be guaranteed, the
dynamic evolution of requirements has to be handled ef-
ficiently and non–functional properties such as security or
quality of services have to be tested. Model–based testing
seem to be a systematic and promising approach to testing
complex SOS but it is still challenging to find the right level
of abstraction and appropriate modeling techniques.

1.2 Contribution

In this paper we present a framework and a testing method-
ology calledTelling TestStories(TTS) which contributes to
the challenges mentioned in Section 1.1. TTS has been de-
signed formodel–based testingof SOS. Itabstracts from
concrete service implementationsby definition of an ab-
stract specification and test model in a domain specific lan-
guage (Section 3) and fromtechnologies and platformsby
introduction of a set of adapters as a layer between the
model level and implementation level (Section 4). TTS
provides atest–driven approach to requirements specifica-
tion, i.e. test models are specified before or at least inter-
wined with the requirements specification which supports
the testing of dynamically evolving services. Therefore we
provideconsistency and coverage checks of the test model
against the system model(Section 3.3) which alsosupport
the manual adaptation of the test model to dynamically
changing requirements. In this paper we concentrate on
the aspect of functionalrequirements testingor system test-
ing. We emphasize the definition of test stories which are
a kind of annotated test scenarios on the requirements level
that can be executed automatically against the system im-
plementation and supporttestmodel–driven system testing.

1.3 Related Work

There has been a lot of research [2, 3] and tool implementa-
tions [4] on model–based testing, i.e. the derivation of tests
from a (test) model of the system under test. Our approach
focuses on the definition of test models based on the sys-
tem model but not on the automatic derivation of test cases

as many other approaches do.
There are only a few approaches applying model–

based testing to SOS. In [5] model–based testing of SOA
applications with the UML Testing Profile has been in-
vestigated and in [6] TTCN-3 has been applied for func-
tional and load testing of web services. Our approach can
be mapped to the UML Testing Profile and therefore also
to TTCN-3. But our metamodel focuses on the core con-
cepts of SOS ideally supporting the development of a test
methodology resp. framework for SOS. This allows the in-
vestigation of model properties such as consistency and
coverage especially for SOS. Coverage criteria for models
have systematically been discussed in [4]. But this investi-
gation does not consider special coverage criteria for SOS.

FIT/Fitnesse [7] is the most prominent framework
which supports system test–driven development of appli-
cations allowing the tabular specification, observation and
execution of test cases by system analysts. Our framework
is due to the tabular specification of test data based on the
ideas of FIT/Fitnesse but integrates it with model–based
testing techniques.

1.4 Structure

In the next section we give an overview of our concepts,
and in Section 3 we define a metamodel for our system and
test model. We then describe a system architecture for our
framework (Section 4) and finally in Section 5 we draw
conclusions and discuss future work.

2 Overview

In this section we provide a high level overview of the TTS
framework and the TTS methodology for system testing of
SOS.

2.1 Telling TestStories Framework

Figure 1 shows the basic structure of the TTS artifacts.
The artifacts are categorized along two orthogonal classi-
fications: Model and Implementationon the one side and
SystemandTeston the other side.

IMPLEMENTATION

MODEL
TESTSYSTEM

Test
Implementation

Test Model
System
Model

System
Implementation invokes

uses

generates
implements

implements

Figure 1. Basic artifacts

The system modeldescribes the system requirements at
business level. An important assumption in our frame-
work is that system model and system implementation
are traceable. In particular, each business service in
the system model can be traced to an executable ser-
vice in the system implementation. The system model
is specified by the domain experts and system analysts
based on the notions ofactors, servicesandclasses.

The system implementationalso called the system under
test (SUT) is the set ofexecutable servicesunder test.

The test modelcontains the test case specifications de-
veloped in an incremental process. This process starts
with the specification oftest stories. Test stories are
structured sequences of service calls at business level
exemplifying the interaction of actors with the system.
Test stories may be generic in the sense that they do
not contain concrete objects but variables which refer
to test values provided in tables. For testing purposes,
test stories are enhanced byassertions, i.e. conditions
to be checked within the execution of the test story.
For completely specifying tests, each test story has a
corresponding initial state and test table. Test stories
can be seen as high level descriptions of the test re-
quirements.

The test implementation is generated by a compiler
which transforms test story files into source code files
of the execution language. These files are then ex-
ecuted by the test controller. Service adapters make
the abstract service calls of the test stories executable
by either providing the glue between the service calls
and the executable services or by a link to surrogate
services like manual input, mock services or external
test services.

2.2 Telling TestStories Methodology

Figure 2 shows the workflow of the TTS methodology. Ac-
tions which are executed automatically by the TTS frame-
work are colored yellow and actions which have to be done
manually (with tool support) are colored green. Note that
the Adapter Implementationaction is a both yellow and
green because it can be done manually or automatically if a
stub generator for the underlying service technology is pro-
vided. The four blue boxes group elements and relate them
to the four corresponding artifacts, i.e. system model, test
model, system implementation and test implementation of
Figure 1.

The TTS testing procedure starts with the iterative
definition of a system model and a test modelwhich is the
basis fortest data definition. Consistency and coverage
checkingmay involve iterative adaptation of the system and
the test model before test code generation. For every ser-
vice definition in the system model we need anadapter im-
plementationto call the systems corresponding executable
service in the system under test. Aftergenerating generic

Test Execution

TestSequence

Test
Sequence
Definition

TestModel

Test
Model
Design

Data
Pool

Definition

Datapool

SUT TestCode

System Implementation Test Code Generation

SystemModel

System
Model

 Design

TestReport TestLogTest Analysis

Consistency/
Coverage
 Checking

Adapter

Adapter
Implementation

Figure 2. Telling TestStories methodology

test codefrom the stories, they are executed with test data
and then its test log isanalyzedwhich may involve changes
in the system model, the test model, the test implementa-
tion or the system implementation.

3 Telling TestStories Metamodel

In the following subsections we define metamodels for the
system model and the test model of our framework, sketch
related consistency and coverage issues and demonstrate
the concepts on a simple ticket reservation system.

3.1 System Model

Figure 3 depicts the core system metamodel. This meta-
model formalizes those elements of the requirements spec-
ification that are referred to in the test model. Note that
elements colored green in Figure 3 are also depicted in
the metamodels of Figure 4 resp. Figure 5 and vice versa,
e.g. the conceptsActor andService of Figure 3 are
also referred to in Figure 5.

Expression

Actor Service

Parameter

Class

System

0..* 0..*

-post

0..*

{ordered}

0..*

-out

0..1

{ordered}

0..*

-in

0..*

-pre

-include
-services

0..*
-actors

1..*

Figure 3. Abstract syntax of the system model

A Service describes the basic functionality a sys-
tem component provides to the outside. Notice that the no-
tion of service is conceived at the business level and is in-
dependent of the underlying technology, e.g. web services.
Services may be hierarchically structured (include).
Services have input parameters (in) and output parame-
ters (out). All parameters are either basic data types or of

aClass type. Additionally services may have a precondi-
tion (pre) and a postcondition (post) expressed in OCL.
Finally, anActor represents a role that interacts with the
system.

We have defined a concrete textual syntax for repre-
senting the system model which has been used in Listing 1
to define the system model of our ticket reservation sys-
tem1.

system {
a c t o rde f Customer
. . .
s e r v i c e d e f R e s e r v e T i c k e t s{

a c t o r s (Customer)
i n (c u s t : Customer ev en t : Event number : I n t e g e r)
out (r e s e r v a t i o n : R e s e r v a t i o n)
pre ev en t . da te>=’2000−01−01’
pre ev en t . da te<=’2009−12−31’
pre number>0 and number<100
pos t r e s e r v a t i o n . s t a t u s = r e s e r v e d

} . . . }

Listing 1. Service description of ReserveTickets

The system model fragment of Listing 1 contains one
actor definition forCustomer and one service defini-
tion for ReserveTickets. The service definition has
one calling actor of typeActor, three input parameters
of typesCustomer, Event andInteger, and one re-
turn value of typeReservation. Additionally the ser-
vice in Listing 1 has three preconditions which restrict
the input parametersevent andnumber, and one post-
condition which states that after the reservation process,
reservation has statusreserved. The preconditions
check the validity of input values and can be used for gen-
erating test data, e.g. by boundary value testing [4].

3.2 Test Model

As mentioned in Section 2.1, the main building blocks
of the test model are test stories which are parameter-
ized control sequences of service calls. In order to
make a test story executable, we assign to it an initial
State and aDataTable and then call such a triple a
TestSequenceElement, e.g.

State_1 ReserveTickets_Cost Data_1 .

A collection of such elements forms aTestSequence
which is the entry point for test execution. The test se-
quence file is executed sequentially and therefore defines
its execution ordering. Figure 4 depicts the metamodel of
the test environment.

In the following paragraphs we describe the elements
of aTestSequenceElement in more detail.

The initial stateState 1 is defined in the XML file
listed in Listing 2. It consists of one service call (Login)

1Due to shortage of space, the complete system and test model canbe
found athttp://teststories.info/trs

http://teststories.info/trs

Data

Datapool

DataTable

Test

TestSequenceElement

TestStory

TestSequence

State

State

System

System

1

1

1..*

1

Figure 4. Metamodel of the test environment

which has to be executed before the story itself and its in-
put and output parameters. More general, all initial system
states are set by a sequence of service calls which may also
invoke special system services without business function-
ality e.g. for filling a database.

<s e r v i c e c a l l>
<servicename> t r s : Login</servicename>
<parameter t ype =” i n ” name=” username ”

d a t a t y p e =” S t r i n g ”>Ken</parameter>
<parameter t ype =” i n ” name=” password ”

d a t a t y p e =” S t r i n g ”>xyz</parameter>
<parameter t ype =” ou t ” name=” c Id ”

d a t a t y p e =” I n t e g e r ”/>
</ s e r v i c e c a l l>

Listing 2. Initial stateState 1

The test storyReserveTickets Cost in Listing
3 is based on the initial state.

t e s t s t o r y R e s e r v e T i c k e t sC o s t {
ac to r Customer c
sequence {

s e r v i c e c : : R e s e r v e T i c k e t s ($c Id $e $n) : : # r
a s s e r t i o n {

[pass] # r . c o s t = $ r e s u l t
[f a i l] no t # r . c o s t = $ r e s u l t

} } }

Listing 3. Test story for ticket cost

The test story defines an instancec of the ac-
tor Customer and a sequence which calls the service
ReserveTickets with input parameterscId which is
the output value of the Login service call inState 1 hold-
ing the identifier of a customer,e for an event andn for
the number of tickets to reserve and the return valuer for a
reservation object. The variablecost of that object is then
compared with an expected result valueresult in the as-
sertion. Values for variables prefixed with ’$’ are defined
by execution of the initial state (cId) or in the correspond-
ing data tableData 1 (e, n, result) of Table 1.

Each row in the test table has anid and defines data
for one test case with values for an event (e), a number of
tickets (n) and an expected result (result).

To define more complex workflows, test stories may
additionally contain alternatives, parallel calls and refer-

id e n result
t 1 Event:e 1 5 135,00
t 2 Event:e 2 4 225,00

Table 1. Data tableData 1

ences. The complete abstract syntax of test stories is given
in Figure 5.

SequenceElement

Sequence

AltExpression

Assertion

Alternative

TestStory

Expression

ParallelAlternatives

Caller

ServiceCall Reference

ValueService

Actor 0..*

{ordered}

0..*

-out

0..*

-in

{ordered}

0..1

1

-inconc

0..1

1

1..*0..1

-fail-pass

0..1

1..*

1..*

0..1

0..*
{ordered}

1

Figure 5. Abstract syntax of test stories

A test story contains one or moreCaller which re-
fer to anActor and aSequence. The latter may consist
of the following elements:

• ServiceCall defines the called service, its calling
actor, its input and return values.

• Assertion defines predicates for computing the test
verdict. We define the following three modifiers in the
same way as in [5]:

– pass indicates that the test behavior gives ev-
idence for correctness of the system under test
(SUT) for the specific test case,

– fail describes that the purpose of the test case
has been violated,

– inconc (inconclusive) is used for cases where
neither apass nor afail can be given.

The conditions are executed in order of their appear-
ance, i.e. the first true expression fires. If no condi-
tion fires and the execution itself has no error, then the
combination of defined modifiers determines the test
result, e.g. if justpass andfail have been defined
and no expression evaluates to true, then the test ver-
dict isinconc.

• Alternatives define a conditional executions of a
sequences.

• Parallel defines the parallel execution of se-
quences.

• Reference defines a reference to another test story.

3.3 Consistency and Coverage

In this section we give an overview of consistency and
coverage which are two important properties that can be

checked at the model level and which support the itera-
tive development of the test and system model.Consis-
tency rulesensure that each test case specified in the test
model can be mapped to an (abstract) execution in the sys-
tem model.Coverage rulesensure that the set of test cases
specified in the test model satisfy some kind of complete-
ness criterion with respect to the set of all executions spec-
ified in the system model.

As an easy but representative example for a consis-
tency rule the invariants in Listing 4 check whether a ser-
vice call has the right number of input resp. output values.

con tex t S e r v i c e C a l l
inv i n p u t p a r : s e r v i c e . in−>s i z e () = in−>s i z e ()
inv o u t p u t p a r : s e r v i c e . out−>s i z e () = out−>s i z e ()

Listing 4. OCL consistency example

As an easy example for a coverage rule the constraint
in Listing 5 checks whether all system services are called
in at least one test story. Therefore it defines a coverage
criteria which we callall-services.

con tex t System
inv a l l −s e r v i c e s :

s e r v i c e s−>f o r A l l (s |
a l l I n s t a n c e s ()−> s e l e c t (oc l I sTypeOf (S e r v i c e C a l l)
. s e r v i c e . name−>i n c l u d e s (s . name))

Listing 5. OCL coverage example

At the moment we have implemented 12 consis-
tency criteria and 3 service coverage criteria (all-actors,
all-services, all-services-all-actors). The all-services-all-
actors criteria which calls every service with all its defined
actors has been the most useful according to user feed-
back. Consistency and coverage checks are an important
aspect of the test drivenness of Telling TestStories because
the quality of the test model (and because of the automatic
mapping of the tests itself) can be investigated before im-
plementing the system. Due to the traceability of services,
consistency and coverage criteria are not just model tests
but also affect the implementation. The preconditions of
services are useful to derive data coverage criteria, e.g. if
the minimum and maximum of input values is defined,
boundaries coverage [4] can be applied. The performance
and scalability of our OCL evaluation technique has al-
ready been investigated in [8].

4 Architecture and Implementation

In this section we present the architecture and the imple-
mentation of the TTS framework. The architecture is de-
picted in Figure 6. It has aRepositorywhich stores and
versions all object nodes depicted in Figure 2 and explained
in the previous sections:

• SystemModelholds the system model,

• TestModelholds the test model as collection of test
stories,

• Datapool holds the test tables corresponding to test
stories and the initial states for executing test stories,

• TestSequenceholds sequences of test stories that can
be executed directly,

• TestLogholds the log files generated within test runs,
• TestReportholds test reports.

The CheckingToolimplements model checks within
and between the test model and the system model as ex-
plained in Section 3.3. TheTSCompilertranslates each test
story intoTestCode, i.e. Java code which contains one top–
level story method parameterized with the input parame-
ters during test execution. In the test codeAdapterobjects
for accessing the available services are instantiated. The
adapters which may be generated automatically or manu-
ally encapsulate the communication with the available ser-
vices which may by implemented e.g. in CORBA or web
service technology and are able to handle synchronous and
asynchronous service calls. TheSUT provides executable
services and may additionally provide system services for
testing, e.g. for resetting the internal database. TheTest-
Controller executes a sequence of test stories. For every
test story an initial state is set up and the stories top–level
method is invoked for every line of its corresponding data
table. The TestController has aTimingcomponent support-
ing timeout monitoring needed for handling asynchronous
service calls and a component forEventHandlingprocess-
ing the events which occur during the test execution such as
errors, timeouts or test verdicts. The Controller generates a
test log for one test story execution. Test logs are used by
theReportManagerto produce test reports.

<<component>>

Repository

<<artifact>>

TestSequence

<<artifact>>

SystemModel

<<artifact>>

TestReport

<<artifact>>

TestModel

<<artifact>>

TestLog

<<artifact>>

Datapool

<<component>>

TestController

<<component>>

Timing

<<component>>

EventHandling

<<artifact>>

TestCode

<<artifact>>

Adapter

<<component>>

SUT

Service_i

SystemService_i

<<component>>

ReportManager

<<component>>

CheckingTool

<<component>>

TSCompiler

Figure 6. Architecture of TTS

We have implemented our framework based on the
Eclipse platform. Therein the repository component corre-
sponds to an versioned Eclipse workspace where all arti-
facts are stored as files. We have defined ecore metamodels
for the test resp. the system model and have implemented
editors for them2. The test code generator which transforms

2In principle every XMI 2.1 compatible tool can be used for external
system and test modeling

test models into executable Java code and the consistency
resp. the coverage rules have been implemented with ope-
nArchitectureWare3. The test controller itself has been im-
plemented in Java. Traceability between the model and the
implementation level is ensured by the adapters which are
assigned to the business services by corresponding names.
The report manager has been implemented as Eclipse view.
The openArchitectureWare sources of our implementation
are available online4.

According to the classification in [4] our framework is
mixedbecause it combines the adaptation approach, i.e. we
implement adapters for calling services and the transforma-
tion approach, because we transform abstract test stories
into Java code. This mixed approach makes transformation
easier and generic because it is independent of concrete ser-
vice calls and it uses adapters for wrapping the bidirectorial
communication between SUT and the test framework.

5 Conclusion and Future Work

The concepts of TTS presented in the preceding sections
are the first results of a thorough requirements elicitation
phase with the goal to support a more efficient model–
based system test process for incremental development of
SOS. We have conducted first experiments with a service–
oriented communication application of our project part-
ner SoftMethod. With TTS it has been possible to model
the functional requirements and the tests incrementally and
clearly.

From this case study and from experiments with our
ticket reservation system we have several technical and
conceptual ideas for future improvements. In addition to
services, actors and classes, future versions of the sys-
tem model may be extended by a variety of sub–models
and specifications such as business processes, business ob-
ject life cycles or rules specifying constraints on the or-
der of service execution which constrain the basic execu-
tion model. These additional artifacts can then be used for
checking consistency resp. coverage of test stories with re-
spect to the extended system model and for generating test
cases. We will extend versioning and reporting concepts
to support regression testing which is very important to
handle the dynamic evolution of requirements. At the mo-
ment we restrict ourselves to functional system testing, but
we will extend TTS to model and test also non–functional
properties such as performance, security and quality of ser-
vices which are of high importance for SOS.

6 Acknowledgements

The research herein is partially conducted within the com-
petence network Softnet Austria (www.soft-net.at) funded
by the Austrian Federal Ministry of Economics (bm:wa),

3http://www.openarchitectureware.org/.
4http://www.teststories.info/trs

the province of Styria, the Steirische Wirtschaftsfrderungs-
gesellschaft mbH. (SFG), and the city of Vienna in terms of
the center for innovation and technology (ZIT). Moreover
part of the research is conducted within Telling TestStories
project funded by TransIT (www.transit.ac.at).

References

[1] L. Ribarov, I. Manova, and S. Ilieva. Testing in a
service–oriented world. InInfoTech–2007, volume 1,
2007.

[2] A. D. Neto, R. Subramanyan, M. Vieira, G. H. Travas-
sos, and F. Shull. Improving Evidence about Software
Technologies: A Look at Model–Based Testing.IEEE
Software, 25(3), 2008.

[3] C. Nebut and F. Fleurey. Automatic test generation:
A use case driven approach.IEEE Trans. Softw. Eng.,
32(3), 2006.

[4] M. Utting and B. Legeard. Practical Model-Based
Testing: A Tools Approach. Morgan Kaufmann Pub-
lishers Inc., 2006.

[5] P. Baker, Z. Ru Dai, J. Grabowski, O. Haugen,
I. Schieferdecker, and C. E. Williams.Model-Driven
Testing - Using the UML Testing Profile. Springer,
2007.

[6] I. Schieferdecker, G. Din, and D. Apostolidis. Dis-
tributed functional and load tests for web services.Int.
J. Softw. Tools Technol. Transf., 7(4), 2005.

[7] R. Mugridge and W. Cunningham.Fit for Developing
Software: Framework for Integrated Tests. Prentice
Hall PTR, 2005.

[8] J. Chimiak-Opoka, M. Felderer, C. Lenz, and
C. Lange. Querying UML Models using OCL and Pro-
log: A Performance Study. In2008 Model Driven En-
gineering, Verification, and Validation, 2008.

http://www.openarchitectureware.org/
http://www.teststories.info/trs

	Introduction
	Challenges
	Contribution
	Related Work
	Structure

	Overview
	Telling TestStories Framework
	Telling TestStories Methodology

	Telling TestStories Metamodel
	System Model
	Test Model
	Consistency and Coverage

	Architecture and Implementation
	Conclusion and Future Work
	Acknowledgements

